
 1

Applying the Rational Unified Process:
A Web Service Sample

The Rational Unified Process (RUP) is a disciplined approach to engineering a piece of
software. In this article, we’ll walk through using the RUP and related products from
Rational to develop a sample application. We’ll describe the process used by the
imaginary Catapulse Pacific Bank to migrate their currency exchange services onto the
Web by providing a Web service — a component that runs on a server and can be
invoked using an XML-based, operating system–independent protocol. Where relevant,
we’ll briefly describe the key technologies used to develop the project.

If you’re new to the RUP, you’ll find this sample useful as a starting point. Readers
already familiar with the RUP (who may want to skip the next section) will be able to
observe the RUP in action as applied to relatively new technologies.

About the RUP
The RUP is flexible and scalable enough to be applied to projects of varying sizes.
Moreover, it’s fairly independent of the type of software being developed. You can apply
the RUP to standalone applications, client/server applications, and Web applications with
equal facility.

In this article, we’ll look at the key RUP roles, activities, and artifacts for our sample
project. These are three of many terms defined in the RUP; most are self-explanatory, but
a good source for additional information is the book The Rational Unified Process: An
Introduction.

The RUP is an iterative rather than a sequential process. Nevertheless, it’s broken up
roughly into four phases — inception, elaboration, construction, and transition — each of
which can be cycled through multiple times. We’ll take our sample project through the
first three phases and present artifacts to mark key milestones reached during these
phases.

About Catapulse Pacific Bank
Catapulse Pacific Bank built its business on the basis of its currency exchange services in
the 1980s and early part of the 1990s. Customers carried out currency exchange over the
phone or on a walk-in basis at the bank. Soon, the popularity of the service prompted
Catapulse Pacific to open counters at other banks, malls, and international tourist
attractions.

 2

When the Internet emerged as a powerful medium of conducting business, Catapulse
Pacific seized the opportunity to put its currency exchange services online. The benefits
would be enormous. By making its services globally accessible and round-the-clock, the
bank could save its customers the inconvenience of finding an exchange location, making
sure they arrived during business hours, and waiting in line. Catapulse Pacific would also
save on the operational costs of running counters at multiple locations.

The Beginning: Inception
At the very beginning of a project — the inception phase — the business-process analyst
plays a key role. (Like all roles, this one can be played by a team of people as well.) The
business-process analyst’s job is to capture the business requirements and the critical use
cases for the project. Later we’ll see how another analyst — the system analyst —
contributes to some of the artifacts created during this phase.

The Vision Document
A key artifact to emerge from the business-process analyst’s efforts is the vision
document, which does the following:

• Describes the market and the reason or idea behind the product being developed.

• Defines the problem, explains the product concept, and positions the product vis-à-vis
the company’s priorities.

• Lists the different types of stakeholders and customers that are important to the
product. (Stakeholder means someone with a vested interest in the end result of the
system — for example, clients, business partners, and investors.) Thumbnail sketches
of the different stakeholder and customer types describe the nature of their
involvement in the system, why they’re interested in the end result, and what
deliverables they’re expecting. This information allows subsequent roles involved in
the project to identify the type of people they should be collecting input from and
what needs to be delivered to them at various points in the project.

Since projects can produce copious output in the form of documents, Rational provides
an application, called Rational RequisitePro, that not only manages requirements but also
acts as a repository for all the documents generated during any phase of the system. (The
documents are actually Microsoft Word documents, although you can access them only
through RequisitePro; we’ll learn more about RequisitePro in a moment.) Table 1 sums
up the key points about the vision document; a similar table follows the description of
each artifact introduced in this article.

 3

Phase Artifact(s) Role(s) Program used

Inception Vision document Business-process
and system analysts

Rational
RequisitePro

Table 1: Vision document

The Business Glossary
At the same time that the vision document is being written, another artifact is taking
shape: the business glossary. This document keeps track of terms and acronyms specific
to the problem domain, explaining terms that may be unfamiliar to the reader of the use
case descriptions or other project documents. Functioning as a project dictionary of sorts,
it’s constantly updated throughout the life of the project. This brings us to a key point:
artifacts generated in the RUP are not static but rather dynamic pieces of information;
they can be modified during an iteration of the phase (or phases) they belong to.

Phase Artifact(s) Role(s) Program used

All Business glossary Business-process
and system analysts

Rational
RequisitePro

Table 2: Business glossary

Using RequisitePro
Before you can create the first document in RequisitePro, you must identify the different
types of documents that the project will produce. You do this by choosing Properties
from the File menu and then clicking the Document Types tab; you can create new
document types from there. RequisitePro provides templates for the entire set of
documents that can be created in the RUP. When creating a new document, you can
simply inherit from its template, and a sample document will be generated that contains
the appropriate sections along with a brief explanation of what should be in each section.
This provides an excellent jump-start; you don’t need a thorough understanding of the
RUP to get going.

It’s not necessary to define all document types at the beginning of a project. You can
come back and set up new types later. It’s good practice to decide on the minimal set of
documents your project requires and create document types for them up front, then create
additional types as the need evolves.

The Business Use-Case Model
The business-process analyst also captures use cases during the inception phase, in the
business use-case model. The use cases are focused around business entities; in other
words, the analyst looks at the use cases the way a customer would. Use-case diagrams

 4

and other Unified Modeling Language (UML) diagrams are best captured in Rational
Rose.

Phase Artifact(s) Role(s) Program used

Inception Business use-case
model

Business-process
analyst

Rational Rose

Table 3: Business use-case model

If you start Rose and load the sample use-case model referred to in this table, you can
take a look at the use cases for Catapulse Pacific Bank. Rose takes you first to the main
class diagram. One possible area of confusion when using Rose is that the program
doesn’t impose any kind of sequence in the way the system is modeled. Although this
flexibility is generally a good thing, there tends to be no clear path in reading a Rose file.
For our project, the first diagrams you should navigate to (through the top-left pane) are
those in the Use Case View folder, in its Business Use-Case Model subfolder. There
you’ll find these uses cases:

• Global View, which outlines the higher-level features offered by the system

• Account Manager, which captures the functions related to creating and maintaining
customer accounts

Moving On: The Elaboration Phase
We’re ready to collect additional requirements during the elaboration phase. Whereas
the focus is on high-level requirements during the inception phase, the focus during the
elaboration phase is on more detailed, lower-level requirements.

Like the business-process analyst, the system analyst is responsible for gathering
requirements and capturing them using models like use cases. This analyst captures the
needs of customers and shapes the system accordingly, and also captures interactions
between use cases — not necessarily doing all this work personally, but at least ensuring
that it gets done.

The system analyst contributes to two earlier documents, the vision document and the
business glossary, and also produces two additional documents: the requirements
management plan and the stakeholder requests document. These documents are essential
to setting the stage before going out to elicit and capture requirements. Let’s take a closer
look at each of these artifacts, and then at the actual requirements collection and creation.

The Requirements Management Plan
The requirements management plan (RMP) is sort of a “meta-requirements” document,
in that it describes what type of requirements must be collected. In our sample, the

 5

system analyst decides to collect three types of requirements: features, needs, and change
requests. Each requirement can be further described by properties such as importance,
cost, and benefit. These properties are captured as attributes, and the RMP lists and
describes each attribute for every type of requirement that will be collected.

Phase Artifact(s) Role(s) Program used

Elaboration Requirements
management plan

System analyst Rational
RequisitePro

Table 4: Requirements management plan

Once the requirement types have been established, you must enter them (along with their
attributes) into RequisitePro. The first step is to add the requirement types themselves.
You do this by choosing Properties from the File menu and then clicking the
Requirements tab. After entering the requirement types, you can add their attributes by
clicking the Attributes tab.

Ideally you’d be able to simply enter the information about requirements into
RequisitePro and have it generate the RMP for you; however, since that’s not the case,
you’ll need to make sure the information is consistent in both places: the RMP document
and RequisitePro.

The Stakeholder Requests Document
Along with the RMP, the system analyst creates the stakeholder requests document,
which is used in collecting the actual requirements (as we’ll see in the next section). The
concept behind it is simple: you establish a set of questions, to be asked during a
stakeholder interview, that will yield all the information needed to characterize a set of
requirements. The stakeholder requests document lends structure to the process of
requirements collection and analysis, thereby enabling the requirements to be
categorized, prioritized, and documented consistently.

Phase Artifact(s) Role(s) Program used

Elaboration Stakeholder
requests document

System analyst Rational
RequisitePro

Table 5: Stakeholder requests document

Requirements Collection and Creation
Armed with the above documents, the team can go about collecting the requirements. A
second iteration of the inception phase can occur at this time to collect high-level
requirements. The requirements collected during the elaboration phase must be

 6

sufficiently detailed to enable the system architect and designer to construct the system in
the next phase.

The requirements are created in RequisitePro, where the attributes of each requirement
can now be assigned values. These requirements can then be used to generate the
software requirements plan (SRP). Our sample shows two iterations of an SRP
document: one generated during the inception phase and another during the elaboration
phase.

The software requirements plan is essential input into the software requirements
specification (SRS). In our sample, we begin the SRS in the elaboration phase, recording
the high-level requirements for what the service will do and how it will perform. (We’ll
finish the SRS in the construction phase, specifying more detailed requirements.)

Phase Artifact(s) Role(s) Program used

Elaboration Software
requirements plan

Software
requirements
specification

System analyst Rational
RequisitePro

Table 6: Software requirements documents

Also at this time, the business-process analyst can create the business object model
(captured under that name in the Logical View of the system in Rose). This object model
describes the realization of business use cases. In our sample, we use collaboration
diagrams to model the three key functions to be provided by the system: show currency
exchange rates, buy currency, and sell currency.

Design and Implementation: The Construction Phase
Once a sufficient set of requirements has been captured, the design and implementation
of the system may begin, in the construction phase of the development lifecycle. During
the design, we match our customers’ requirements with existing technology to see how
we can best build the system. In our sample, we use the Microsoft .NET Framework to
produce a Web service. A Web service is a component that runs on a server and can be
invoked using the Simple Object Access Protocol (SOAP), an XML-based, operating
system–independent protocol. Microsoft .NET offers an implementation of SOAP over
HTML (hence the name Web service). Results from the Web service are returned in
XML.

Catapulse Pacific Bank will (in addition to moving account management online) provide
a Web service to allow online currency exchange. It’s expected that third-party banks or

 7

financial institutions will use this Web service and offer it to their clients as part of their
services. In such cases, the client that consumes the Web service may be a script that’s
embedded in a vendor’s Web page.

Each customer of the system must have previously set up an account, which involves
creating a debit account and a credit account. (These accounts can be the same but are
internally tracked as two separate accounts.) When a currency exchange is made, the
money is moved from the debit account, converted to the desired currency, and moved
into the credit account.

Clients of the Web service can browse a list of available currencies and query the
exchange rate of each one. When the client requests a currency exchange, the Web
service returns a transaction ID. Receipt of the transaction ID doesn’t guarantee a transfer
of funds. If approved, the actual transaction (transfer of funds) will occur later, but no
later than in three hours.

As we’ll see in the following sections, we make heavy use of Rational Rose when
designing and implementing the system. We also finish the SRS during this phase, adding
details to it that specify the data the service will use. By now the SRS should be at a level
of detail that clearly spells out how system design will be executed.

Design
Rational Rose allows you to choose the most appropriate UML diagram for illustrating
what you’re trying to convey. From the top-left pane in Rose, select the Design Model
folder. It has four subfolders, each one representing a different layer in the system and
illustrated using the most appropriate diagram for that layer (see Table 7). As you can
see, separating the design model into layers conveys an excellent breakdown of the
system architecture.

Layer Contents of layer Diagram used in
Rose

System software layer Components such as operating systems,
databases, and interfaces to specific
hardware

Class diagram

Middleware layer Components such as GUI builders,
interfaces to database management
systems, platform-independent
operating system services, and OLE
components (such as spreadsheets and
diagram editors)

Class diagram

 8

Business-specific layer Business-specific components, used in
several applications

None for our
sample

Application layer Application-specific services and value-
added software developed by the
organization

Sequence diagram

Table 7: Design model layers

A critical design artifact for our sample is the class diagram for the Web service, which
can be found in the subsystem folder by that name in the design model’s Application
layer. This diagram shows the Web service interface as defined in the business object
model and then breaks down the various classes and their methods and properties.
Elements can be copied in Rose between different folders (that is, phases of
implementation), in which case Rose will cross-reference the element by tagging it with
its origin; you can see this in the Web service class diagram. The diagram also shows the
various system modules that the Web service uses, allowing us to map dependencies
between our modules and system services — dependencies that intimately affect
development and deployment.

Phase Artifact(s) Role(s) Program used

Construction Web service class
diagram

Business-process
and system analysts,
developers, testers,
managers

Rational Rose

Table 8: Web service class diagram

Implementation
Our implementation is written in C# in Microsoft Visual Studio .NET Beta 1.
(Pronounced “C sharp,” this language is based on C++ but was designed specifically with
Web services in mind.) If you’re using a later beta version or the final release, you may
encounter some differences in the implementation.

Phase Artifact(s) Role(s) Program used

Construction Source code Developers, testers,
managers

Microsoft Visual
Studio .NET Beta 1

Table 9: Source code

The roles mentioned in Table 9 are really categories of roles. The RUP specifies the
different roles within each category. Loading the source code file referred to here into

 9

Visual Studio .NET will show the implementation of the Web service. Explaining how a
Web service is written and executed is beyond the scope of this article, but you can
consult some of the references provided under “Related Resources” to gain a thorough
understanding.

The implementation details of the system are captured in the Component View in Rose.
This view is used to set up a description of the subsystems that make up in the
implementation. Rose is more restrictive here in terms of the diagrams that can be used:
the only one allowed is a component diagram, because the others don’t make sense in this
context. The Currency Exchange Service diagram maps out the implementation of the
sample.

For a step-by-step guide of how to build and test the Web service, see the accompanying
document “Building and Testing the Web Service Sample.”

Documentation
At this point, since you’re probably getting familiar with Rose, let’s explore another of its
key features related to design. Rose allows a lot of documentation about the design to be
embedded in the models themselves. Each element in Rose has associated
documentation. To view the documentation, you first need to locate the element in a
diagram. Each element is listed in the same view in which the diagram appears. For
example, in the Implementation View under the component diagram, you’ll see each of
the elements in the form of packages and components used in the diagram. Double-
clicking any of these elements in this view will bring up the element’s specification,
which contains additional documentation for that element. You can also bring up this
specification by double-clicking the element from within the diagram itself.

If documentation is embedded throughout the Rose diagrams, you may wonder whether
you have to navigate to every element to view all of it. Here the Rational Development
Suite comes to the rescue with a report-generation utility called Rational SoDA. SoDA
allows contents of the Rose file to be selectively saved to a Microsoft Word document.
SoDA also works with RequisitePro; you can select the type of information you want
from RequisitePro and use SoDA to save it to a Word file.

 10

Phase Artifact(s) Role(s) Program
used

Inception Use-case model survey (report
containing use-case diagrams
and documentation from Rose)

Business-process
and system analysts

Rational
SoDA

Elaboration Requirements summary (report
containing description field of
each requirement in
RequisitePro)

Requirements details (report
containing requirements in
RequisitePro, with description
and attributes of each)

System analyst Rational
SoDA

Construction Design document (report
containing analysis and design
views from Rose)

System analyst,
system architect,
developers, testers,
managers

Rational
SoDA

Table 10: SoDA reports

Summary
We’ve seen how the RUP can be applied to a project that migrates a bank’s currency
exchange services onto the Web. We’ve looked at the first three RUP phases —
inception, elaboration, and construction — and the related roles, activities, and artifacts.
Table 11 summarizes (by phase) the artifacts that entered into our sample project.

Phase Artifact(s) Role(s) Program used

Inception Vision document Business-process
and system analysts

Rational
RequisitePro

 Business use-case
model

Business-process
analyst

Rational Rose

 Use-case model survey Business-process
and system analysts

Rational SoDA

 11

Elaboration Requirements
management plan

Stakeholder requests
document

Software requirements
plan

Software requirements
specification (started)

System analyst Rational
RequisitePro

 Requirements summary

Requirements details

System analyst Rational SoDA

Construction Web service class
diagram

Business-process
and system analysts,
system architect,
developers, testers,
managers

Rational Rose

 Source code Developers, testers,
managers

Microsoft Visual
Studio .NET Beta 1

 Software requirements
specification
(completed)

System analyst Rational
RequisitePro

 Design document System analyst,
system architect,
developers, testers,
managers

Rational SoDA

All Business glossary Business-process
and system analysts

Rational
RequisitePro

Table 11: Summary of sample artifacts

In the fourth and final phase, transition, the software product is moved to the user
community; for the sake of brevity, we’ve omitted exploring this phase of our sample
project, but you can learn more about this phase and any other aspects of the RUP from
the introductory RUP book or the RUP product itself.

 12

Related Resources
• The Rational Unified Process: An Introduction, Second Edition by Philippe Kruchten

(Addison-Wesley, 2000)

• Articles from Microsoft: “Develop a Web Service: Up and Running with the SOAP
Toolkit for Visual Studio” by Rob Caron, and “Web Services with ASP.NET” by Rob
Howard

• .NET sample Web services from GotDotNet

About the Author
Aspi Havewala is an independent software consultant with extensive experience
developing products for various markets (including managing software projects,
consulting, and designing and developing device drivers and both desktop and Web
applications). He also writes technical articles on programming, process, and
management.

Copyright 2001 Rational Software Corporation. All rights reserved.

